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Abstract—One-shot active stereo using structured light is a
practical solution for dynamic scene acquisition. Basically, those
methods are based on encoding positional information of the
pixel into the single projected pattern. A disadvantage of such
methods is decreases of the spatial resolution caused by requiring
a certain area of the pattern to encode the positional information.
Among those methods, grid-based patterns are promising at the
point of accuracy and robustness, since triangulation for 3D
reconstruction is conducted with light-sectioning method and
a line detection is usually a stable image processing. However,
no shapes are recovered between the grid lines, and thus, the
whole reconstructed shape tends to be sparse. To deal with
the problem, integrating multiple shapes that are sequentially
captured using registration algorithm such as ICP is one solution.
In previous work, we show that naive ICP works poorly for
grid-like structured point clouds, and proposed a specialized ICP
algorithm for aligning a set of grid-like structured 3D shapes. In
this paper, we extend this approach and propose a process for
entire shape modeling by capturing objects from all the directions
using turn table, and integrating into a single shape using our
improved ICP. To achieve this, setting good initial 3D shapes is
important. For solution, we interpolation grid shapes to create
smooth surface so that common ICP works. Comprehensive
experiments are conducted to show the strength of our method
compared to common ICP.

I. INTRODUCTION

For visual information of robots, analysis and inspection
purposes of human motion, there is a high demand to capture
3D shapes of dynamic scenes. To capture dynamic scenes, one-
shot active stereo methods using structured illuminations are
practical solutions, and widely researched and developed [1].
Basically, those methods are based on encoding positional
information of each point on the projected image into the
pattern of the image. To achieve 3D reconstruction, the signals
of the captured camera image should be correctly decoded to
obtain the positional information on the projector image for
acquiring correspondences between the projector image plane
and the camera image plane. A disadvantage of such methods
is decreases of the spatial resolution caused by assuming a
certain area of smooth surfaces to encode the positional infor-
mation with sufficient uniqueness of the encoded information.

Among the one-shot active stereo methods, grid based re-
construction methods have an advantage of accurate position-
ing of reconstructed points [2], [3], [4], because triangulation
for obtaining 3D points is done by light-sectioning method,
where 3D reconstruction of sub-pixel accuracy can be easily
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(a) Input image (b) reconstruction result

Fig. 1. Grid reconstruction result of Stanford bunny

achieved. Moreover, detection of line patterns is generally
stable even with noises such as subsurface scattering effects.

One disadvantage of 3D capturing method using the grid
patterns is sparse results obtained, because the intervals of the
grid lines remains empty (Fig. 1). To deal with the problem,
integrating multiple shapes that are sequentially captured using
registration algorithm such as ICP is promising. In [5], we
proposed an alignment method for 3D data set acquired by a
3D endoscopic system, where grid-like structured light is used.
In the work, multiple shapes that consist of 3D curves are
aligned with specially-designed alignment criteria, obtaining
dense 3D points from sparse, line-based shapes. Note that
they assume mainly small translational motion because their
main purpose is to increase the density of the shape rather
than enlarge the recovered shape. In this work, we extend
the method to realize entire-shape acquisition using an active
scanning method using grid-based structured light.

In this paper, we show that naive ICP works poorly for
grid-like structured point clouds, and show an improved ICP
algorithm [5] that takes grid-like structures of the inputs
into consideration. Using the improved algorithm, multiple
grid-structured point clouds can be registered correctly. We
also newly propose a process for entire shape modeling by
capturing objects from all the directions using grid-pattern
projection. This is efficiently done by densifying the point
clouds to realize smoothness on the surface, whereas original
shapes only have high frequency structure, i.e., grid lines. In
the proposed modeling process, our improved ICP is utilized
for registering multiple grid-like shapes into an integrated
shape model. In the experiments, we show the effectiveness
of our technique with several tests using simulated and real
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data by comparing with common ICP method.

II. RELATED WORK

Our contribution is based on a rigid registration algorithm.
Rigid registration algorithms estimate translation and rotation
of an object from two point sets, with the ICP algorithm [6]
and its extension to multiple point sets [7] being the two best-
known approaches. Since then, improved techniques have been
intensively researched on realtime registration [8], large scale
simultaneous registration [9], [10] and color compensated reg-
istration [11]. However, since they all assume a large overlap
of dense shapes, they generally cannot be used whenever the
shape is sparse such as a grid based reconstruction [2], [3],
[12].

Recently, an ICP for the sparse point set was proposed [13],
however, since the technique is still based on the corre-
spondences of closest points, lines in the same direction are
inevitably pulled together, and thus, all the grid based shapes
are bundled into a single grid liked shape.

Banno et al. proposed a method to align the multiple 3D
curves which are reconstructed by the light sectioning method
into single consistent shape [14], however, they assumed that
a base dense shape with holes is captured in advance as the
target object for aligning 3D curves. Therefore, the technique
cannot be applied to the data which consists of independent
curves only. Another approach to achieving robust registration
of multiple shapes is based on 3D features extracted from input
shapes [15], [16], [17], [18], [19]. However, stable 3D features
are usually extracted only from dense 3D points and cannot
be applied to grid based shapes, whose points are sparse and
unevenly distributed.

The proposed method is an extension of the alignment
method of [5]. In [5], an alignment method is used for making
dense point clouds from a set of sparse point sets that consist
of 3D lines. In this work, we use the similar approach for
realizing an entire-shape modeling. To achieve this, setting
good initial estimation of the relative 3D positions of the
multiple 3D shapes is important. In this paper, we propose
a novel method for this problem.

Fig. 3. Process of grid ICP
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Fig. 4. Overview of the registration of grid-line shapes.

III. REGISTRATION OF GRID-STRUCTURED SHAPES AND
ENTIRE SHAPE ACQUISITION BY GRID-PATTERN
PROJECTION

Overview of our technique is shown in Fig. 4. First, a
target object is captured from various directions by line based
scanning system, especially a grid based stereo system using
a video projector [2], [3], [12] in the paper. We used a
rotation turn table in our experiment for scanning (Sec. III-A).
To recover the entire shape, registration of all the shapes is
required, however, since they are thin (line) shapes, common
registration techniques do not work; note that it is difficult to
either estimate normal direction of points on a 3D line/curve
or find correct correspondences between lines/curves. To avoid
the problem, we first densify the shapes so that a common
registration algorithm, such as ICP, can be applied (Sec. III-B).
After the initial registration, we apply grid ICP which is spe-
cialized for grid shapes to achieve fine registration (Sec. III-C).

A. Active stereo system with grid-pattern projection

A sequence of 3D point clouds is captured by a single
pattern projector and a camera as shown in Fig. 2. The camera
and the projector are assumed to be calibrated (i.e., the intrinsic
and extrinsic parameters are known). Since the projector casts
a static grid pattern, no synchronization is required and it is
suitable to acquire a 3D shape of dynamic scene or entire
shape by moving the sensor. To recover the shape from
single projection, correspondences between the detected line
on the captured image and the line on the projection pattern



are estimated [2], [3], [12]. Once the correspondences are
obtained, the points on the vertical and horizontal lines are
reconstructed as 3D curves using a light-sectioning method.
Since the line intervals between parallel lines are wide enough
to avoid mis-detection by the subsurface scattering or similar
effect, the shapes can be only coarsely reconstructed. To
increase the density of the sparse grid shaped 3D points, one
solution is to capture the object multiple times by moving the
sensor, and then, align to integrate them.

B. Reconstruction of entire shapes of objects

To achieve acquiring an entire shape of object, a large
number of images are taken from various directions. For
practicality of capturing process, usually objects are captured
by 3D sensor, rotating it with a turntable at most 20 to 40
times. Initial position can be roughly estimated by using the
marker on the turntable or image/shape features on the object.
In the experiments, we calibrate the turntable to estimate the
rotation axis with respect to the camera in advance to the
capturing process and

One critical issue of the scenario is that, since ICP algorithm
assumes smooth surface of the object, simultaneous registra-
tion of high frequency shape with a large number of input
easily stack into local minimum; remember that a sparse grid
shape is a considerably high frequency shape.

To deal with this problem, we interpolate the sparse grid
shapes to make dense and smooth surface. The interpolation
is done in the 2D domain of the depth image of the camera,
i.e., the depth function d(x) : R? — R is interpolated from
the sample depth values s(x;) € R at x; € R?. We use
approximation form of

_ 2 oUx = xill)gi(x)
d(x) = , (1)
> o(llx = xil)

where g¢;(x) is a linear approximation of d(x) around the
sample point x;. ¢(||x — x;||) is a value for weighting p;(x)
most at x; and less at x that is far from x;. For the weighting
function ¢, we use ¢(t) = exp(—}%) where R, is the radius
of approximation.

For the approximation g¢;(x), we use linear 2D regression
of depth image d(x) around x;, which is fit to the sample set
around x;, i.e., N(x;) = {(x;, s(x;))|||xi—%;|| < Rp}, where
R, is the radius of the neighbor samples. The regression model
is g;(x) = a;- (x —x;)+s(x;) where a; is the liner regression
coefficient calculated from N (x;), i.e., a; = (ij eN(xn) (X~
%) (% = %)) TN e o) (K5 = Xi) (8(%5) = s(x4)).

The interpolated shape may miss the small details of the
original shape, but they are useful for coarse and robust
registration of the shapes. Therefore, we first register these
interpolated shapes using ICP, and then, apply the estimated
rigid transformations to each original grid shapes, respectively.

C. Grid ICP algorithm for grid-structured shapes

Once the coarse registration is achieved with the interpo-
lated shapes, fine registration is applied to the original shapes.
Although the ICP algorithm is the most used solution to

conduct shape alignment between 3D shapes of a static object,
we cannot simply use the algorithm to the line shaped object.
The common ICP algorithm consists of two steps such as 1)
searching for the closest point q; € R? of the scene object
from point p; € R3, which belongs to the target object, and
2) estimate a rigid transformation R,t by minimizing

Do lpi— (R ai+ )] )

Final parameters of R, t are obtained by iterating the two steps
until convergence.

The reason why such a naive ICP algorithm does not
work properly on sparse grid shapes is that the closest points
from vertical/horizontal lines of the scene object are usually
found on the line in same direction of the target shape; note
that such incorrect corresponding points are pulled together
to minimize the differences to configure an incorrect wrong
shape as shown in Fig. 3 upper row. Noteworthy, if multiple
shapes are captured with small shifts (translational motions)
of positions, grid lines tends to be bundled together.

For solution, we use a new ICP algorithm, which we call
grid ICP algorithm in this paper, to solve this problem. Fig. 3
lower row shows the process of our algorithm. We first divide
the grid shape into two sets of lines depending on the line
directions, i.e., the vertical set and the horizontal set. Then,
the closest point q; in the vertical line set from the point pih
in the horizontal line set is searched. We use KD-tree to find
correspondences in the paper. Similarly, the closest point P
in the horizontal line set from the point p; which belongs
to the vertical line set is found. Finally, rigid transformation
parameters 2, t are estimated by minimizing

Slpl = (Ra+ )7+ > lp) — (Rd}+t)°. 3)

J

Final results are obtained by iterating the aforementioned steps
until convergence. Within this scenario, grid lines of the final
shapes are evenly distributed realizing dense reconstruction of
the object surface.

IV. EXPERIMENTS
A. Entire-shape acquisition using simulation data

To evaluate the entire-shape acquisition, first, we made a
simulated data. The model for the simulation is Stanford bunny
shape data. The projected pattern is a straight-lined grid pattern
with modulated intervals used in [3]. The image with the
pattern projection by a virtual projector was generated by a
simple computer graphics technique. To simulate the entire-
shape acquisition, a number of images were similarly gener-
ated while rotating the rendered shape model. By processing
each of the rendered image with the 3D reconstruction process
for the pattern [3], grid-structured shapes of 3D curves were
obtained as shown in Fig. 5(a)-(d). Then, the entire-shape
modeling process of the smooth shape interpolation method
followed by the grid ICP is applied to 8 of them. Fig. 5(1)
shows densified shapes at initial positions, and Fig. 5(j) shows
a result after ICP as for the coarse registration. A common ICP



Fig. 6. Entire object capturing scene.

and grid ICP are applied on Fig. 5(j). As shown in Fig. 5(1),
grid ICP method correctly recovered the entire shape, whereas
result of common ICP, as shown in Fig. 5(k), was stuck into
the local minimum and the shape is shrank and distorted.
RMS errors are 2.73% after ICP on interpolated shape (coarse
registration), 2.71% after grid ICP and 6.03% with common
ICP of the height of the target object. Note that common ICP
result is even worse than the coarse ICP result for this case.

B. Evaluation of entire-shape acquisition using real objects

Next, we evaluated grid ICP technique for translational
movements of the target object, i.e., mannequin head, by using
a a video projector and a CCD camera for the experiment
and the actual captured scene is shown in Fig. 6. We use
grid reconstruction method of Sagawa et al. [3] by which
accurate 3D shapes of the texture-less objects can be stably
obtained by using color information. We captured 9 sequential
frames of images of the target objects while slightly moving
the capturing device of projector and camera pair with 3 % 3
shifts to z and y direction, respectively. The captured images
are reconstructed frame-by-frame, and a common ICP and the
proposed grid ICP are applied to the shapes for comparison.
Fig. 7(c)(d) are examples of a reconstructed shapes from the
captured frames. Fig. 7 (a) is the 3D shape reconstructed with a
temporal encoded technique, i.e., gray code [20] as the ground
truth. The registration result with a common ICP and the grid
ICP are shown in Fig. 7(e)(f). From the figures, we can confirm
that integrated 3D points with the grid ICP are more evenly
distributed than that with the common ICP.

Then, we captured the entire shape of the mannequin head
using the rotation table with the same system. We captured 32
times and apply our technique to 8 out of them. Fig. 7(g)(h)
shows examples of a reconstructed shapes from the captured
frames. Those reconstructed frames are registered with both
the common ICP and the grid ICP algorithms and the reg-
istration results are shown in Fig. 7(1)(j). From the figures,
we can confirm that the entire shape is correctly reconstructed
with the techniques. As can be seen in Fig. 7(1)(j), grid lines
are more sparse with the common ICP than that with the grid
ICP algorithm, since the grid lines of multiple frames were
pulled together with a common ICP, whereas the grid lines
were uniformly distributed with the grid ICP.

Finally, we conducted the same experiments to several
objects and all results are shown in Fig. 9. The integrated

shapes are registered to the ground-truth shape (Fig. 9 top row)
and RMSE values are calculated for both the common ICP and
the grid ICP algorithms. The RMSE values are summarized
in Table. I, II, Fig. 8(a) and (b). From the data, we can
confirm that the grid ICP always outperforms the others both
in translational and rotational movements. At the same time,
we can also confirm that the ratio of the improvement is
greater in translational movement than in rotational movement,
i.e., 6.6% for translation and 3.0% for rotation in average.
Such differences can be intuitively understood by the fact that
the translational movement does not drastically change the
recovered shape, whereas rotational movement makes a large
difference, if the shape is not planar.

V. CONCLUSION

In this paper, we proposed an improved ICP algorithm
specifically for registering multiple grid-structured point
clouds to recover a entire shape of object. The idea of the
proposed algorithm is based on observation that the naive ICP
often fails for grid-structured shapes because vertical lines and
vertical lines (or horizontal lines and horizontal lines) tend to
improperly attract each other. In the proposed algorithm, the
cost function to be minimized is defined so that the vertical
lines only attract horizontal lines, and vice versa. We also
proposed a coarse to fine technique, in which thin shapes are
densified to create smooth surface so that common ICP works
with rough initial positions. The potential of the techniques
was verified by experiments using simulated and real data.
Our future work is to restoring small detailed shapes from
relatively coarse grid-pattern projection.
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applied, and then, common ICP and grid ICP algorithms are applied. We can clearly see that grid ICP recovers its correct positions, whereas common ICP
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Fig. 7. Mannequin heads are reconstructed by the grid scan technique [2] from several camera positions. The common ICP is applied to the densified shapes
as a coarse registration, and then, common ICP and grid ICP algorithms are applied to the grid-line shapes. Results are shown that shapes are more evenly
distributed with the grid ICP than the common ICP techniques for both translational and rotational motions.
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Fig. 8. Registration comparison results. RMSE (mm) values are minimum for all the cases with grid ICP technique.
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