
Real-Time Image-Based Rendering System for Virtual City
Based on Image Compression Technique and Eigen Texture Method

Ryo Sato∗ Shintaro Ono∗∗ Hiroshi Kawasaki∗ Katsushi Ikeuchi∗∗
∗Saitama University

{satou,kawasaki}@cgv.ics.saitama-u.ac.jp
∗∗The University of Tokyo

{onoshin,ki}@cvl.iis.u-tokyo.ac.jp

Abstract

Computer modeling of a large-scale scene such as
a city becomes an important topic for computer vi-
sion and computer graphics research areas etc. Image-
based rendering (IBR) is an effective method for ex-
pressing realistic scene, and can construct any ar-
bitrary viewpoint by using the captured real images.
However, the large size of the image database in IBR
causes serious problems in actual applications, lead-
ing to the use of compression techniques. We propose a
compression technique based on eigen space combined
with a block matching technique to get better result. We
also propose a technique to restore the compressed data
on Graphic Processing Unit (GPU), allowing us to per-
form high-speed rendering without raising the load on
the CPU.

1. Introduction

In recent years, researches on the computer model-
ing of large scale scenes such as a city has been in-
tensively conducted in many fields. For constructing
and expressing such large scale scenes, model-based
rendering (MBR) and image-based rendering (IBR) are
mainly proposed.

MBR is a classical method, where a virtual view
from any arbitrary viewpoint can be easily recon-
structed, by using explicit 3-D geometric model and
texture information of the scene. However, reconstruc-
tion of models with texture information of the scene re-
quires huge human cost and time. Especially, it is gener-
ally difficult to express intricately shaped objects, such
as tree with leaves, realistically by MBR.

On the other hand, IBR is a method that reconstructs
a virtual view by using a number of images captured

beforehand. IBR can easily express the scene with high
photo-reality even for intricately shaped objects, since
real images are used. One of demerits of IBR is that it
requires a large quantity of image data to render large
scenes.

Efficiently compressing the image data allows a re-
alistic construction of a large scale scene while keeping
the data size manageable.

In our case, we use omni-directional image sequence
for the image database. We noticed that the sequence
of omni-directional images captured along the road has
redundancy, because the same object is captured from
multiple view directions. Exploiting this, we propose
an effective compression method for the data by using
an eigen texture method — applying principal compo-
nent analysis (PCA), or KL expansion to particular im-
age sequences[1]. It is known this method can give high
compression ratio if the similarity among the image se-
quence is high.

To improve the compression ratio, we propose ac-
curate tracking by using block matching, based on EPI
(Epipolar Plane Image) analysis[2]. We also propose a
method to restore the compressed data using the GPU,
which can achieve high-speed rendering without a high
CPU load. By using the proposed methods, we can re-
alize real-time rendering with IBR on a standard PC.

2. Outline of city modeling system

Our system is composed of three processes:
(1) Capturing omni-directional images
(2) Compressing the images

-Image rectification
-Tracking
-Eigen texture method (PCA)

(3) Rendering from the compressed data

3. Compression Method

Many of the applications of IBR make use of omni-
directional images (Fig.1(a)) because a wide field of
view is available [3, 4]. To capture these images, we
used a multiple camera based system, Ladybug2.

Prior to the compression, omni-directional images
are projected onto a perpendicular plane along the side
of the capturing course, as shown in Figure 1(b). While
appearance transition of buildings in an original omni-
directional image sequence is non-linear and distorted,
the resulting project appearance transition becomes lin-
ear and non-distorted. By doing this, the tracking de-
scribed in 3.1 can be performed easily because it ap-
pears as a straight line on an EPI.

(a)

(b)

Figure 1. (a) Omni-directional image, (b)
Rectified image

3.1.Tracking
Tracking is preformed in order to find similar part

in the image sequence, and two steps: an approximate
global tracking and a precise local tracking.
Global tracking by space-time image analysis
We take advantage of space-time image analysis for
global tracking. By accumulating the image sequence
in the temporal direction, so-called space-time image
volume can be constructed. An EPI is an image appears
on a planar cross-section of the space-time volume par-
allel to an epipolar plane among the sequential camera
positions. The trajectories of edge lines on the EPI are
determined by camera’s moving speed and the distance
between the camera and the object. If the movement
of the camera can be assumed as uniform, or can be
roughly normalized as uniform by some external de-
vices, the tracking process is equivalent to determining
straight lines on the EPI. In this paper, we assume that
the movement of the camera is uniform.

The tracking can be simplified in the case such that
the objects face on an approximately constant plane in
the real world. A series of building facades in urban

scene is a typical example. In such case, the global
tracking can be expressed by one parameter — choos-
ing a typical inclination among the straight lines in the
EPI. Straight lines in the EPI can be detected by ap-
plying edge detection followed by a Hough transform,
which givesρ andθ in Figure 2. The global tracking
parameter is the amount of movement of the object in
one frame, which is equal to− tan θ.

z (Time)z
uθρ

z (Time)z (Time)z
uθρ

Figure 2. EPI

Local Tracking by Block-Matching
In order to get higher compression ratio, partial image
sequences which are subject to be compressed are de-
sired to be similar as much as possible. We perform
local tracking to realize this. The process is shown
in figure 3. According to the global tracking, a block
image drawn in bold at framef1 should move to the
dotted block in framef2 andf3. In actual case, how-
ever, because of vibration and minute change of moving
speed of the camera, the corresponding image blocks
are shifted from the result of global tracking. There-
fore, the block image with the highest correlative value
with the block image of previous frame is searched by
doing block matching between the frames around the
result of the global tracking.

d
mn frame f1f2 f3d
mn frame f1f2f2 f3f3

Figure 3. Tracking using block maching

3.2.Compression by eigen texture
First video frame is divided into the unit of the block

of m× n (figure 3). For each block image, the tracking

described in 3.1. is applied up to thed-th frame, then
the sets of similar block images are obtained. PCA is
applied to each block set, which is compressed intok
eigen images. Applying this to allm×n block sets, the
whole image sequence is compressed.

4. Rendering

4.1.Restoration of Compressed Images
Restoration of the image uses the eigen image which

is obtained by PCA, and the image of the originali-th
frameXi can be restored by the linear sum as follows.

Xi =
r∑

k=1

(wik ∗ Vk) (1)

wherek-th eigen image isVk, weight coefficient ofi-th
frame iswik, and the number of principal component
required in order to achieve a certain cumulative pro-
portion isr.
4.2.Rendering Algorithm

Figure 4 shows our method of rendering compressed
data in the case of3 × 1 block sets in figure 3. Render-
ing at a certain viewpoint P is to put the texture corre-
sponding to an angle composed of the viewpoint P and
the center of wall plane, and the texture is selected from
among the image set captured on the capturing route
A,B,C [4]. The texture at this time is obtained by restor-
ing the image which corresponds toθ1, θ2, θ3 from the
eigen images in each A,B,C.

0
90

P

Restoration
Eigen images for WEigen images for W

Eigen images for W Restoration
Restoration

AB
C

Rendering Plane Capturing route
Rendering

1θ 2θ 3θ
Wall

12
3

W 1W 1W 1W 1

W 2W 2W 2W 2

W 3W 3W 3W 33θ θ
2θ

1θ

W 1W 2W 3
0

90
P

Restoration
Eigen images for WEigen images for W

Eigen images for W Restoration
Restoration

AB
C

Rendering Plane Capturing route
Rendering

1θ 2θ 3θ
Wall

12
3

W 1W 1W 1W 1W 1W 1W 1W 1

W 2W 2W 2W 2W 2W 2W 2W 2

W 3W 3W 3W 3W 3W 3W 3W 33θ θ
2θ

1θ

W 1W 2W 2W 3W 3

Figure 4. Rendering algorithm

4.3.Fast restoration using GPU
We explain how to restore an original imageX1 us-

ing figure 5. Firstly the compressed data (eigen images
Vk and weight parameterswik) are loaded onto the main
memory, and product sum operation ofVk andwik is

processed using CPU (Figure 5.(a)). The image ob-
tained is then passed to GPU as a texture, and it is used
for texture mapping. This is an ordinary CPU-based
restoration process. However, when restoring the orig-
inal imageX2 secondly, the procedure same asw2k is
needed in a weighting coefficient and processing takes
time. The complexity of this method is ofO(n2), so
the load on CPU increases rapidly if the texture size be-
comes large. On the other hand, in GPU-based method,
after the compressed data has been read using the CPU,
it is passed to GPU as textures, and a product sum oper-
ation is processed only in the fragment shader of GPU
(figure 5(b)). Even when restoringX2, it can process
by the product sum operation ofVk andw2k which have
been held beforehand, and it is not necessary to remake
a texture.

CPU processingReading eigen image data

Texture mapping
GPU processing

kV1V 2V ...
11w 12w kw1

21w 22w kw 21iw 2iw ikw
kV1V 2V

11w 12w kw1

+= iX
Product sum operation (Restoration)

......
...+ +

CPU processingReading eigen image data

Texture mapping
GPU processing

kV1V 2V ...
11w 12w kw1

21w 22w kw 21iw 2iw ikw
kV1V 2V

11w 12w kw1

+= iX
Product sum operation (Restoration)

......
...+ +

CPU processingReading eigen image data

Multi texture mapping (Restoration)
GPU processing

= iX
Fragment shader

kV1V 2V

Passing as texture
kV1V 2V ... 21w 22w kw 21iw 2iw ikw

11w 12w kw1......
...

21w 22w kw 21iw 2iw ikw
11w 12w kw1......

......

CPU processingReading eigen image data

Multi texture mapping (Restoration)
GPU processing

= iX
Fragment shader

kV1V 2V

Passing as texture
kV1V 2V ... 21w 22w kw 21iw 2iw ikw

11w 12w kw1......
...

21w 22w kw 21iw 2iw ikw
11w 12w kw1......

......
(a) CPU-based (b) GPU-based

Figure 5. Image restoration process

5. Experiments

5.1.Result of Tracking and Compression
Each of the rectified omni-directional image is di-

vided into the block size 16× 16 pixel, and the data
of 70 frames obtained by the tracking is compressed.
Table 1 is final result of compression. It turns out that
more similar block image set can be obtained by im-
provement of the tracking accuracy, and the compres-
sion ratio is improved.
5.2.Comparison in Processing Time for Rendering

The processing time for rendering by GPU-based
method was compared with CPU-based method. The
comparison is performed by measuring the time of pro-
cessing that repeats process of restoring original 70 im-
ages sequentially 100 times. The spec of used PC is
Intel Core 2 (2.66GHz), and GPU is Quadro FX 550.
The result is the graph of figure 6. It turned out that the
processing time in the CPU-based method is increasing

Table 1. Result of compression
EPI　 EPI+Block maching

Average of Correlative value 0.756491 0.936779
Cumulative propotion 50% (Compression ratio of data)7.3 (28.1/280KB) 4.3 (16.6/280KB)
Cumulative propotion 70% (Compression ratio of data)14.0 (53.6/280KB) 10.6 (40.9/280KB)
Cumulative propotion 90% (Compression ratio of data)28.6 (109/280KB) 28.3 (108/280KB)

(a)
(b)

(c) Rendering Plane

Driving Path

Rendering Plane

(a)
(b)

(c) Rendering Plane

Driving Path

Rendering Plane

(a) (b) (c) (d)

Figure 7. Result of rendering.

010203040506070 16*16 32*32 64*64 128*128 192*192 256*256Size of image (pixel)frame per second (fps) CPU-basedGPU-based
Figure 6. Comparison of processing time

rapidly as the image size becomes larger(Fig.6). On the
other hand, the GPU-based method keeps constant pro-
cessing time regardless of the image size.
5.3.Result of rendering

Figure 7 (a), (b), (c) are the results of rendering,
which are the scenes from viewpoints (a), (b), (c) re-
spectively in the Figure 7 (d). These scenes are ren-
dered by sum of eigen images under 75% cumulative
proportion.

6. Conclusion

In this paper, we proposed two technique for con-
struction of large scale scene. One is the novel com-
pression method for omni-directional images by using
eigen textures, and the other is a high-speed rendering
algorithm using the GPU. Since compression ratio be-

comes low when there is translational difference among
a series of image blocks subject to be compressed, we
proposed a tracking method using block matching based
on EPI analysis, and improved the compression ratio.
The compression data can be easily restored by prod-
uct sum operation of the eigen images and the weight
coefficient. Taking advantage that this operation is to-
tally linear, we implemented the operation using frag-
ment shader in a graphic hardware, and achieved more
high-speed and stable rendering without raising the load
of CPU.

References

[1] K. Nishino, Y. Sato, K. Ikeuchi,“ Eigen-texture
method: Appearance Compression based on 3D
Model”, IEEE Computer Society Conference
on Computer Vision and Pattern Recognition
(CVPR), pp. 618-624, Jun. 1999.

[2] R. Bolles, H. Baker and D. Marimont:“ Epipolar
plane image analysis: an approach to determining
structure from motion”, Int. J. of Computer Vi-
sion, Vol. 1, pp. 7-55, 1987.

[3] C. J. Taylor,“ Video plus”, IEEE Workshop on
Omnidirectional Vision, pp. 3-11, 2000.

[4] H. Kawasaki, K. Ikeuchi, and M. Sakauchi,“Light
field rendering for image-scale scenes”, Proc. In-
ternational Conference on Computer Vision and
Pattern Recognition (CVPR), Vol. 2, pp. 64-71,
Kauai, Hawaii, US, 2001.

